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1) Instrument error (usually, but not always, uncorrelated)
2) Mapping operator (H) error (interpolation, radiative transfer)

3) Pre-processing, quality control, and bias correction errors

4) Error of representation (sampling or scaling error), which can
lead to correlated error:
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* Most™ current DA methods generally assume no correlations between
observations at different levels or locations (i.e., a diagonal R)

* To compensate for observation errors that are actually correlated, one

or more of the following is typically done:
— Discard (“thin”) observations until the remaining ones are

uncorrelated (Bergman and Bonner (1976), Liu and Rabier (2003))
— Local averaging (“superobbing”) (Berger and Forsythe (2004))

— Inflate the observation error variances ([

* Recent theoretical studies (e.g. Stewart et a
including even approximate correlation stru

diagonal R with variance inflation
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* “InJanuary, 2013, the Met Office went operational with a vertical

observation error covariance submatrix for the I1ASI instrument, which
showed forecast benefit in seasonal testing in both hemispheres (Westson

et al. (2014))
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Hollingsworth-Lonnberg Method

(Hollingsworth and Lonnberg, 1986)
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* Use innovation statistics from a dense observing network

* Assume horizontally uncorrelated observation errors

e Calculate a histogram of background innovation covariances binned by
horizontal separation

* Fit an isotropic correlation model, extrapolate to zero separation to estimate
the correlated (forecast) and uncorrelated (observation) error partition A



Desroziers Method

Desroziers et al. 2005
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* An advantage of the dual formulation is that correlated
observation error can be implemented directly

* No matrix inverse is required, which lifts some
restrictions on the feasible size of a non-diagonal R

* In particular, implementing horizontally correlated
observation error is significantly less challenging
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Correlated Observation Error

and the ATMS
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Channel Number

Error Covariance Estimation

for the ATMS

Statistical Estimate
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Estimating R is insufficient; we must be able to
use it to assimilate data with correlated error




e We ran NAVGEM 1.3 at T425L60 resolution
with the full suite of operational instruments

for two months, from July 1, 2013 through Aug
31, 2013

* The control experiment used a diagonal R for
the ATMS instrument

* The ATMS experiment used the R diaghosed
from the Desroziers method applied to three
months of innovation statistics

* R was symmetrized, but not otherwise altered
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Assess Forecast Impact with
Observation Sensitivity Tools

NAVDAS-AR Observation Sensitivity NAVDAS-AR Observation Sensitivity
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Adjoint-based system (Langland and Baker, 2004) enables
rapid assessment of changes to the DA system
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Conclusions

* The Hollingsworth-Lonnberg and Desroziers
error covariance estimation methods can
quantify correlated observation error

* The NAVGEM system allows for direct use of a
non-diagonal R; implementing vertically
correlated error is straightforward.

* Correctly accounting for correlated
observation error in data assimilation may
vield superior forecast results without a large
computational cost

14



Discussion

* How can we best estimate errors in Desroziers/Hollingsworth- Lonnberg
diagnostics?

— Should we expect agreement between different methods?

— Will the Desroziers diagnostic converge if both R and B are
incorrectly specified?

— Amount of data required to estimate covariances? Seasonal
dependence?

— Best methods to symmetrize the Desroziers matrix?
 How to gauge improvement?

— Do we also need to adjust to see overall improvement to the
system?

— How do we maintain the correct ratio for DA?
e What about convergence?

— Should we do an eigenvalue scaling to improve the condition
number? .



